Educational Robots Market (By Product: Humanoid, Non-Humanoid; By Application: Primary, Secondary, Higher) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook 20212030

The global Educational Robots market size is expected to be worth around US$ 8.27 billion by 2030, according to a new report by Vision Research Reports.

The global Educational Robots market size was valued at US$ 860.82 million in 2020 and is anticipated to grow at a CAGR of 20.8% during forecast period 2021 to 2030.

Educational Robots Market Size 2021 to 2030

Report Coverage

Report Scope Details
Market Size US$ 8.27 billion by 2030
Growth Rate CAGR of 20.8% From 2021 to 2030
Base Year 2021
Forecast Period 2021 to 2030
Segments Covered Product type, Application
Regional Scope North America, Europe, Asia Pacific, Latin America, Middle East & Africa
Companies Mentioned Aisoy Robotics; Blue Frog Robotics & Buddy; Innovation First International Inc.; LEGO System A/S; Makeblock; Modular Robotics; Pal Robotics; Pitsco Inc.; Robotis; SoftBank Robotics

Growth Factors

An educational robot can be defined as a learning companion that uses real-life educational models to aid students of different ages in obtaining new skills by making learning a fun process. Educational robots offer information in the fields of Science, Technology, Engineering, Art, and Mathematics (STEAM), as well as linguistics, computer programming, geography, and history. To keep young students involved, delighted, and educated, these robots can perform a variety of duties, comprising advanced mechanics, voice control, and gestures.

The pandemic forced governments to seal global borders and temporarily shut industrial operations, markets, educational institutions, and other public places in 2020. The closure of training centers, universities, schools, and the restrictions imposed on import, export, and manufacturing led to a notable drop in sales of educational robots. In addition, the high initial investment costs associated with the purchase of educational robots could hamper the growth of the market.

By Application Analysis

The higher education segment accounted for the largest revenue share of more than 36% in 2020 and is expected to maintain its leading position over the forecast period. This can be attributed to the complexities involved in building robots as older students are more rational thinkers and require complex input from the robot’s abilities.

The primary education segment accounted for a significant market share in 2020 and is projected to grow at the fastest CAGR over the forecast period. This can be attributed to the increasing need to introduce Science, Technology, Engineering, Art, and Math (STEAM) education to children under the age of 10 years to develop independent thinking, a comprehensive approach to learning, and encourage natural curiosity.

By Product Type Analysis

The global market has been segmented into humanoid and non-humanoid, based on product type. The non-humanoid segment accounted for the largest revenue share more than f 59% in 2020 and is expected to continue to dominate the market over the forecast period.

The humanoid segment is anticipated to register the fastest CAGR over the forecast period. The growth of this segment can be attributed to the high demand for humanoid robots due to their advanced features and increasing set of applications across various areas in the educational sector.

By Regional Analysis

North America dominated the market in 2020 with a revenue share of more than 33% and is anticipated to retain its position over the forecast period. The presence of major market vendors and high adoption of advanced technologies among the educational institutes owing to the rising popularity of activity-based education&changes in educational guidelines are the key factors driving the market growth in the region.

The growth of the regional market can be attributed to the increase in investments made by governments and Non-government Organizations (NGOs) in the field of robotics. For instance, Robotex India, a non-profit organization, provides robotics, Artificial Intelligence (AI), STEAM, IoT, and Machine Learning (ML) skills to students in urban as well as rural areas of India.

Key Players

  • Aisoy Robotics

  • Blue Frog Robotics & Buddy

  • Innovation First International Inc.

  • LEGO System A/S

  • Makeblock

  • Modular Robotics

  • Pal Robotics

  • Pitsco Inc.

  • Robotis

  • SoftBank Robotics 

Market Segmentation

  • By Product Type

    • Humanoid

    • Non-Humanoid

  • By Application 

    • Primary

    • Secondary

    • Higher

    • Others

  • Regional

    • North America

      • U.S.

      • Canada

    • Europe

      • U.K.

      • Germany

      • France

      • Italy

      • Rest of Europe

    • Asia Pacific

      • China

      • India

      • Japan

      • Rest of Asia Pacific

    • Latin America

      • Brazil

      • Mexico

      • Rest of Latin America

    • Middle East & Africa

The Educational Robots market research report covers definition, classification, product classification, product application, development trend, product technology, competitive landscape, industrial chain structure, industry overview, national policy and planning analysis of the industry, the latest dynamic analysis, etc., and also includes major. The study includes drivers and restraints of the global market. It covers the impact of these drivers and restraints on the demand during the forecast period. The report also highlights opportunities in the market at the global level.

The report provides size (in terms of volume and value) of Educational Robots market for the base year 2020 and the forecast between 2021 and 2030. Market numbers have been estimated based on form and application. Market size and forecast for each application segment have been provided for the global and regional market.

This report focuses on the global Educational Robots market status, future forecast, growth opportunity, key market and key players. The study objectives are to present the Educational Robots market development in United States, Europe and China.

It is pertinent to consider that in a volatile global economy, we haven’t just conducted Educational Robots market forecasts in terms of CAGR, but also studied the market based on key parameters, including Year-on-Year (Y-o-Y) growth, to comprehend the certainty of the market and to find and present the lucrative opportunities in market.

In terms of production side, this report researches the Educational Robots capacity, production, value, ex-factory price, growth rate, market share for major manufacturers, regions (or countries) and type.

In terms of consumption side, this report focuses on the consumption of Educational Robots by regions (countries) and application.

Buyers of the report will have access to verified market figures, including global market size in terms of revenue and volume. As part of production analysis, the authors of the report have provided reliable estimations and calculations for global revenue and volume by Type segment of the global Educational Robots market. These figures have been provided in terms of both revenue and volume for the period 2017 to 2030. Additionally, the report provides accurate figures for production by region in terms of revenue as well as volume for the same period. The report also includes production capacity statistics for the same period.

With regard to production bases and technologies, the research in this report covers the production time, base distribution, technical parameters, research and development trends, technology sources, and sources of raw materials of major Educational Robots market companies.

Regarding the analysis of the industry chain, the research of this report covers the raw materials and equipment of Educational Robots market upstream, downstream customers, marketing channels, industry development trends and investment strategy recommendations. The more specific analysis also includes the main application areas of market and consumption, major regions and Consumption, major Chinese producers, distributors, raw material suppliers, equipment providers and their contact information, industry chain relationship analysis.

The research in this report also includes product parameters, production process, cost structure, and data information classified by region, technology and application. Finally, the paper model new project SWOT analysis and investment feasibility study of the case model.

Overall, this is an in-depth research report specifically for the Educational Robots industry. The research center uses an objective and fair way to conduct an in-depth analysis of the development trend of the industry, providing support and evidence for customer competition analysis, development planning, and investment decision-making. In the course of operation, the project has received support and assistance from technicians and marketing personnel in various links of the industry chain.

Educational Robots market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies’ focus related to Educational Robots market.

Prominent players in the market are predicted to face tough competition from the new entrants. However, some of the key players are targeting to acquire the startup companies in order to maintain their dominance in the global market. For a detailed analysis of key companies, their strengths, weaknesses, threats, and opportunities are measured in the report by using industry-standard tools such as the SWOT analysis. Regional coverage of key companies is covered in the report to measure their dominance. Key manufacturers of Educational Robots market are focusing on introducing new products to meet the needs of the patrons. The feasibility of new products is also measured by using industry-standard tools.

Key companies are increasing their investments in research and development activities for the discovery of new products. There has also been a rise in the government funding for the introduction of new Educational Robots market. These factors have benefited the growth of the global market for Educational Robots. Going forward, key companies are predicted to benefit from the new product launches and the adoption of technological advancements. Technical advancements have benefited many industries and the global industry is not an exception.

New product launches and the expansion of already existing business are predicted to benefit the key players in maintaining their dominance in the global market for Educational Robots. The global market is segmented on the basis of region, application, en-users and product type. Based on region, the market is divided into North America, Europe, Asia-Pacific, Latin America and Middle East and Africa (MEA).

In this study, the years considered to estimate the market size of Educational Robots are as follows:

  • History Year: 2017-2020
  • Base Year: 2021
  • Forecast Year 2021 to 2030

Reasons to Purchase this Report:


- Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and policy aspects
- Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
- Market value USD Million and volume Units Million data for each segment and sub-segment
- Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
- Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players

Research Methodology:

In-depth interviews and discussions were conducted with several key market participants and opinion leaders to compile the research report.

This research study involved the extensive usage of both primary and secondary data sources. The research process involved the study of various factors affecting the industry, including the government policy, market environment, competitive landscape, historical data, present trends in the market, technological innovation, upcoming technologies and the technical progress in related industry, and market risks, opportunities, market barriers and challenges. The following illustrative figure shows the market research methodology applied in this report.

The study objectives of this report are:

  • To analyze and study the global market capacity, production, value, consumption, status (2017-2020) and forecast (2021-2030);
  • Focuses on the key manufacturers, to study the capacity, production, value, market share and development plans in future.
  • Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
  • To define, describe and forecast the market by type, application and region.
  • To analyze the global and key regions market potential and advantage, opportunity and challenge, restraints and risks.
  • To identify significant trends and factors driving or inhibiting the market growth.
  • To analyze the opportunities in the market for stakeholders by identifying the high growth segments.
  • To strategically analyze each submarket with respect to individual growth trend and their contribution to the market
  • To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market

To strategically profile the key players and comprehensively analyze their growth strategies.

Chapter 1.  Introduction

1.1.  Research Objective

1.2.  Scope of the Study

1.3.  Definition

Chapter 2.  Research Methodology

2.1.  Research Approach

2.2.  Data Sources

2.3.  Assumptions & Limitations

Chapter 3.  Executive Summary

3.1.  Market Snapshot

Chapter 4.  Market Variables and Scope

4.1.  Introduction

4.2.  Market Classification and Scope

4.3.  Industry Value Chain Analysis

4.3.1.    Raw Material Procurement Analysis

4.3.2.    Sales and Distribution Channel Analysis

4.3.3.    Downstream Buyer Analysis

Chapter 5.  Market Dynamics Analysis and Trends

5.1.  Market Dynamics

5.1.1.    Market Drivers

5.1.2.    Market Restraints

5.1.3.    Market Opportunities

5.2.  Porter’s Five Forces Analysis

5.2.1.    Bargaining power of suppliers

5.2.2.    Bargaining power of buyers

5.2.3.    Threat of substitute

5.2.4.    Threat of new entrants

5.2.5.    Degree of competition

Chapter 6.  Competitive Landscape

6.1.1.    Company Market Share/Positioning Analysis

6.1.2.    Key Strategies Adopted by Players

6.1.3.    Vendor Landscape

6.1.3.1.        List of Suppliers

6.1.3.2.        List of Buyers

Chapter 7.  Global Educational Robots Market, By Product

7.1.  Educational Robots Market, by Product, 2021-2030

7.1.1.    Humanoid

7.1.1.1.        Market Revenue and Forecast (2017-2030)

7.1.2.    Non-Humanoid

7.1.2.1.        Market Revenue and Forecast (2017-2030)

Chapter 8.  Global Educational Robots Market, By Application

8.1.  Educational Robots Market, by Application, 2021-2030

8.1.1.    Primary

8.1.1.1.        Market Revenue and Forecast (2017-2030)

8.1.2.    Secondary

8.1.2.1.        Market Revenue and Forecast (2017-2030)

8.1.3.    Higher

8.1.3.1.        Market Revenue and Forecast (2017-2030)

Chapter 9.  Global Educational Robots Market, Regional Estimates and Trend Forecast

9.1.  North America

9.1.1.    Market Revenue and Forecast, by Product (2017-2030)

9.1.2.    Market Revenue and Forecast, by Application (2017-2030)

9.1.3.    U.S.

9.1.3.1.        Market Revenue and Forecast, by Product (2017-2030)

9.1.3.2.        Market Revenue and Forecast, by Application (2017-2030)

9.1.4.    Rest of North America

9.1.4.1.        Market Revenue and Forecast, by Product (2017-2030)

9.1.4.2.        Market Revenue and Forecast, by Application (2017-2030)

9.2.  Europe

9.2.1.    Market Revenue and Forecast, by Product (2017-2030)

9.2.2.    Market Revenue and Forecast, by Application (2017-2030)

9.2.3.    UK

9.2.3.1.        Market Revenue and Forecast, by Product (2017-2030)

9.2.3.2.        Market Revenue and Forecast, by Application (2017-2030)

9.2.4.    Germany

9.2.4.1.        Market Revenue and Forecast, by Product (2017-2030)

9.2.4.2.        Market Revenue and Forecast, by Application (2017-2030)

9.2.5.    France

9.2.5.1.        Market Revenue and Forecast, by Product (2017-2030)

9.2.5.2.        Market Revenue and Forecast, by Application (2017-2030)

9.2.6.    Rest of Europe

9.2.6.1.        Market Revenue and Forecast, by Product (2017-2030)

9.2.6.2.        Market Revenue and Forecast, by Application (2017-2030)

9.3.  APAC

9.3.1.    Market Revenue and Forecast, by Product (2017-2030)

9.3.2.    Market Revenue and Forecast, by Application (2017-2030)

9.3.3.    India

9.3.3.1.        Market Revenue and Forecast, by Product (2017-2030)

9.3.3.2.        Market Revenue and Forecast, by Application (2017-2030)

9.3.4.    China

9.3.4.1.        Market Revenue and Forecast, by Product (2017-2030)

9.3.4.2.        Market Revenue and Forecast, by Application (2017-2030)

9.3.5.    Japan

9.3.5.1.        Market Revenue and Forecast, by Product (2017-2030)

9.3.5.2.        Market Revenue and Forecast, by Application (2017-2030)

9.3.6.    Rest of APAC

9.3.6.1.        Market Revenue and Forecast, by Product (2017-2030)

9.3.6.2.        Market Revenue and Forecast, by Application (2017-2030)

9.4.  MEA

9.4.1.    Market Revenue and Forecast, by Product (2017-2030)

9.4.2.    Market Revenue and Forecast, by Application (2017-2030)

9.4.3.    GCC

9.4.3.1.        Market Revenue and Forecast, by Product (2017-2030)

9.4.3.2.        Market Revenue and Forecast, by Application (2017-2030)

9.4.4.    North Africa

9.4.4.1.        Market Revenue and Forecast, by Product (2017-2030)

9.4.4.2.        Market Revenue and Forecast, by Application (2017-2030)

9.4.5.    South Africa

9.4.5.1.        Market Revenue and Forecast, by Product (2017-2030)

9.4.5.2.        Market Revenue and Forecast, by Application (2017-2030)

9.4.6.    Rest of MEA

9.4.6.1.        Market Revenue and Forecast, by Product (2017-2030)

9.4.6.2.        Market Revenue and Forecast, by Application (2017-2030)

9.5.  Latin America

9.5.1.    Market Revenue and Forecast, by Product (2017-2030)

9.5.2.    Market Revenue and Forecast, by Application (2017-2030)

9.5.3.    Brazil

9.5.3.1.        Market Revenue and Forecast, by Product (2017-2030)

9.5.3.2.        Market Revenue and Forecast, by Application (2017-2030)

9.5.4.    Rest of LATAM

9.5.4.1.        Market Revenue and Forecast, by Product (2017-2030)

9.5.4.2.        Market Revenue and Forecast, by Application (2017-2030)

Chapter 10.  Company Profiles

10.1.              Aisoy Robotics

10.1.1.  Company Overview

10.1.2.  Product Offerings

10.1.3.  Financial Performance

10.1.4.  Recent Initiatives

10.2.              Blue Frog Robotics & Buddy

10.2.1.  Company Overview

10.2.2.  Product Offerings

10.2.3.  Financial Performance

10.2.4.  Recent Initiatives

10.3.              Innovation First International Inc.

10.3.1.  Company Overview

10.3.2.  Product Offerings

10.3.3.  Financial Performance

10.3.4.  Recent Initiatives

10.4.              LEGO System A/S

10.4.1.  Company Overview

10.4.2.  Product Offerings

10.4.3.  Financial Performance

10.4.4.  Recent Initiatives

10.5.              Makeblock

10.5.1.  Company Overview

10.5.2.  Product Offerings

10.5.3.  Financial Performance

10.5.4.  Recent Initiatives

10.6.              Modular Robotics

10.6.1.  Company Overview

10.6.2.  Product Offerings

10.6.3.  Financial Performance

10.6.4.  Recent Initiatives

10.7.              Pal Robotics

10.7.1.  Company Overview

10.7.2.  Product Offerings

10.7.3.  Financial Performance

10.7.4.  Recent Initiatives

10.8.              Pitsco Inc.

10.8.1.  Company Overview

10.8.2.  Product Offerings

10.8.3.  Financial Performance

10.8.4.  Recent Initiatives

10.9.              Robotis

10.9.1.  Company Overview

10.9.2.  Product Offerings

10.9.3.  Financial Performance

10.9.4.  Recent Initiatives

10.10.           SoftBank Robotics

10.10.1.               Company Overview

10.10.2.               Product Offerings

10.10.3.               Financial Performance

10.10.4.               Recent Initiatives

Chapter 11.  Research Methodology

11.1.              Primary Research

11.2.              Secondary Research

11.3.              Assumptions

Chapter 12.  Appendix

12.1.              About Us

12.2.              Glossary of Terms

Proceed To Buy

USD 4500
USD 3800
USD 1900
USD 1200

Customization Offered

  • check-imgCross-segment Market Size and Analysis for Mentioned Segments
  • check-imgAdditional Company Profiles (Upto 5 With No Cost)
  • check-img Additional Countries (Apart From Mentioned Countries)
  • check-img Country/Region-specific Report
  • check-img Go To Market Strategy
  • check-imgRegion Specific Market Dynamics
  • check-imgRegion Level Market Share
  • check-img Import Export Analysis
  • check-imgProduction Analysis
  • check-imgOthers