Spatial OMICS Market (By Technology: Spatial Transcriptomics, Spatial Genomics, Spatial Proteomics; By Product: Instruments, Consumables, Software; By Workflow: Sample Preparation, Instrumental Analysis, Data Analysis; By Sample Type; FFPE, Fresh Frozen; By End-use: Academic & Translational Research Institutes, Pharmaceutical and Biotechnology Companies) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook 2021 – 2030

Published Date : Aug 2021 | No. of Pages : 150+ Pages | Category : Healthcare

The global Spatial OMICS market size is expected to be worth around US$ 584.22 Mn by 2030, according to a new report by Vision Research Reports.

The global Spatial OMICS market size was valued at US$ 305.81 Mn in 2020 and is anticipated to grow at a CAGR of 15.05% during forecast period 2021 to 2030.

Growth Factors

 Startups and well-established players continued their product development and launched novel solutions, democratized their offerings beyond innovators, and engaged in mergers & acquisitions. The spatial OMICS field originated from hyperplexed imaging; however, key players have shifted toward the development of spatial transcriptomics solutions and products.

Rapid advances in the sequencing of tissues, genes, and single cells have resulted in the emergence of spatial genomic sequencing. Spatial OMICS techniques offer quantitative gene expression data and visualization of DNA and RNA mapping within tissue sections. The development of novel technologies for spatial OMICS is anticipated to create lucrative opportunities for the fields of translational research as well as diagnostics.

The spatial genomics technology segment is expected to expand at the fastest CAGR throughout the forecast period owing to a rise in the launch of novel platforms. The integration of high-throughput solutions in transcriptomics, genomics, and proteomics studies has enabled determining the link between disease occurrence and genome position.

Report Highlights

The spatial transcriptomics segment dominated the market with a share of 73.56% in 2020. Continuous advancements in sequencing technologies have accelerated the transcriptomic study of single cells. For the comprehensive study of multicellular organisms, efforts are being taken to design novel solutions for high-throughput genomic analysis while maintaining the spatial information of the sample/tissue under observation or subcellular localization of analyzed DNA/RNA.

The development of various in situ methods enhances the capabilities to explore spatial information in biological investigation. These methods have led to the convergence of function-oriented fields of biochemistry and molecular genetics with structure-focused fields such as histology and embryology, thereby enabling spatially resolved molecular investigation of biological processes.

The consumables segment accounted for the largest share of 63.01% in 2020 owing to the high utilization rate and launch of novel products. For instance, in March 2021, Bruker launched new consumables for the chemical cross-linking of proteins (XL-MS). The new PhoX cross-linker facilitates the purification of protein from XL-MS reaction complex mixtures. Moreover, the company plans to launch three cleavable cross-linkers for cleaving the cross-linkers generated in MS experiments.

The launch of new instruments is directly associated with the development of the consumables. Therefore, this drives the instruments as well as the consumables segment. In December 2020, NanoString announced the development of spatial molecular imager (SMI). It is a next-generation spatial OMICS platform designed for multiplexed protein and RNA analysis for single cells in FFPE tissue samples. The platform is expected to be launched by 2022. 

The instrumental analysis segment dominated the market with a revenue share of 57.69% in 2020. The growth of the segment can be primarily attributed to substantial advancements being performed in instruments such as microscopy and mass spectrometry. Mass spectrometry is one of the most promising tools that is used for quantifying nucleic acid and proteins.

It has several advantages such as high resolution, high speed, and high-throughput operations for profiling of protein, which are later used for analyzing complex biological samples. This facilitates novel applications such as new drug development, biomarker discovery, and diagnostics.

The formalin fixation and paraffin-embedding (FFPE) segment held the largest share of 67.26% in 2020. FFPE is considered a standard sample type that is most used for the preservation of human tissue for clinical diagnosis, and hence it holds a major share in the global market. This technique is considered the best in researching tissue morphology for clinical histopathology and diagnostic purposes.

In addition, FFPE specimens are found in abundance in clinical tissue banks, which contributes to the segment growth. However, they are incompatible with single-cell level transcriptome sequencing owing to RNA degradation and RNA damage during storage and extraction. Hence, researchers are focusing on new approaches for increasing the application of FFPE in spatial transcriptomic studies.

The academic and translational research institutes segment dominated the market with a revenue share of 99.60% in 2020. An increase in the adoption of spatial OMICS to translate real-time tissue responses to an external agent increases the technology’s adoption in translational research. Translational studies in the field of genomics help researchers and healthcare practitioners analyze the behavior of human tissues and cells from different individuals in different environments.

This vital information may lead to the evolution of new and better ways to prevent diseases. For instance, single-cell transcriptomics is found to be useful for neuroscientists to understand cell types forming the brain. These methods help understand the spatial architecture of nervous tissues and evaluate the brain’s function. However, this further requires linking molecular cell types to physiological, morphological, and behavioral factors.

North America accounted for the largest share of 54.80% in 2020. This can be attributed to the increasing prevalence of cancer, the growing demand for personalized medicine, well-developed healthcare facilities, and the availability of novel diagnostic techniques. The growing morbidity and mortality rates due to cancer and other metabolic, autoimmune, and inflammatory disorders have led to an increase in the need for developing novel therapies, thereby driving the market in this region.

In addition, companies operating in North America are launching new initiatives and programs for discovering and increasing translational applications, which is further contributing to the market growth. For instance, in March 2021, NanoString Technologies, Inc. launched the Technology Access Program (TAP) through which the company will analyze tissue samples of patients using the Spatial Molecular Imager platform and GeoMx Digital Spatial Profiler. Hence, such initiatives help in expanding spatial biology applications in the region.

Report Coverage Details
Market Size US$ 584.22 Mn by 2030
Growth Rate

CAGR of 15.05% From 2021 to 2030

Base year 2020
Historic Data 2017 to 2020
Forecast Period 2021 to 2030
Segments Covered Technology, Product, Workflow, Sample Type, End use
Regional Scope North America, Europe, Asia Pacific, Latin America, Middle East & Africa (MEA)
Companies Mentioned 10x Genomics; Dovetail Genomics; S2 Genomics, Inc.; NanoString Technologies, Inc.; Seven Bridges Genomics; PerkinElmer, Inc.; Bio-Techne; Danaher Corporation; IonPath, Inc.; Millennium Science Pty Ltd.; Akoya Biosciences, Inc.; Fluidigm Corporation; Diagenode Diagnostics; Biognosys AG; Rebus Biosystems; Ultivue, Inc.; Vizgen Corp.; BioSpyder Technologies; Bruker; Brooks Automation, Inc.

Key Players

  • 10x Genomics

  • Dovetail Genomics

  • S2 Genomics, Inc.

  • NanoString Technologies, Inc.

  • Seven Bridges Genomics

  • PerkinElmer, Inc.

  • Bio-Techne

  • Danaher Corporation

  • IonPath, Inc.

  • Millennium Science Pty Ltd.

  • Akoya Biosciences, Inc.

  • Fluidigm Corporation

  • Diagenode Diagnostics

  • Biognosys AG

  • Rebus Biosystems

  • Ultivue, Inc.

  • Vizgen Corp.

  • BioSpyder Technologies

  • Bruker

  • Brooks Automation, Inc. 

Market Segmentation

  • Technology Outlook 

    • Spatial Transcriptomics

      • Sequencing-based Methods

        • Laser capture microdissection (LCM), by tissue type

          • FFPE tissue samples

            • Others

        • Transcriptome in-vivo analysis (TIVA)

        • In situ sequencing

        • Microtomy sequencing

      • IHC

      • Microscopy-based RNA Imaging Techniques, by methods        

        • Single Molecule RNA Fluorescence In-Situ Hybridization (smFISH)

        • Padlock Probes/ Rolling Circle Amplification

        • Branched DNA probes

    • Spatial Genomics

      • FISH

      • Microscopy-based Live DNA Imaging

      • Genome Perturbation Tools

      • Massively-parallel Sequencing

      • Biochemical Techniques

      • Others

    • Spatial Proteomics

      • Imaging Techniques

        • Microscopy

        • Multiplexed Ion Beam Imaging

      • Mass Spectrometry

      • Immunofluorescence Techniques

      • Centrifugation Techniques

      • Others

  • Product Outlook 

    • Instruments

      • By Mode

        • Automated

        • Semi-automated

        • Manual

      • By Type

        • Sequencing Platforms

        • IHC

        • Microscopy

        • Flow Cytometry

        • Mass Spectrometry

        • Others

    • Consumables

    • Software

      • Bioinformatics tools

      • Imaging tools

      • Storage and management databases

  • Workflow Outlook 

    • Sample Preparation

    • Instrumental Analysis

    • Data Analysis

  • Sample Type Outlook

    • FFPE

    • Fresh Frozen

  • End-use Outlook (Revenue, USD Million, 2017 - 2028)

    • Academic & Translational Research Institutes

    • Pharmaceutical and Biotechnology Companies

  • Regional Outlook

    • North America

      • U.S.

      • Canada

    • Europe

      • Germany

      • U.K.

      • France

      • Spain

      • Italy

      • Netherlands

    • Asia Pacific

      • Japan

      • China

      • India

      • South Korea

      • Australia

      • Singapore

    • Latin America

      • Brazil

    • MEA

      • South Africa

The Spatial OMICS market research report covers definition, classification, product classification, product application, development trend, product technology, competitive landscape, industrial chain structure, industry overview, national policy and planning analysis of the industry, the latest dynamic analysis, etc., and also includes major. The study includes drivers and restraints of the global market. It covers the impact of these drivers and restraints on the demand during the forecast period. The report also highlights opportunities in the market at the global level.

The report provides size (in terms of volume and value) of Spatial OMICS market for the base year 2020 and the forecast between 2021 and 2030. Market numbers have been estimated based on form and application. Market size and forecast for each application segment have been provided for the global and regional market.

This report focuses on the global Spatial OMICS market status, future forecast, growth opportunity, key market and key players. The study objectives are to present the Spatial OMICS market development in United States, Europe and China.

It is pertinent to consider that in a volatile global economy, we haven’t just conducted Spatial OMICS market forecasts in terms of CAGR, but also studied the market based on key parameters, including Year-on-Year (Y-o-Y) growth, to comprehend the certainty of the market and to find and present the lucrative opportunities in market.

In terms of production side, this report researches the Spatial OMICS capacity, production, value, ex-factory price, growth rate, market share for major manufacturers, regions (or countries) and type.

In terms of consumption side, this report focuses on the consumption of Spatial OMICS by regions (countries) and application.

Buyers of the report will have access to verified market figures, including global market size in terms of revenue and volume. As part of production analysis, the authors of the report have provided reliable estimations and calculations for global revenue and volume by Type segment of the global Spatial OMICS market. These figures have been provided in terms of both revenue and volume for the period 2017 to 2030. Additionally, the report provides accurate figures for production by region in terms of revenue as well as volume for the same period. The report also includes production capacity statistics for the same period.

With regard to production bases and technologies, the research in this report covers the production time, base distribution, technical parameters, research and development trends, technology sources, and sources of raw materials of major Spatial OMICS market companies.

Regarding the analysis of the industry chain, the research of this report covers the raw materials and equipment of Spatial OMICS market upstream, downstream customers, marketing channels, industry development trends and investment strategy recommendations. The more specific analysis also includes the main application areas of market and consumption, major regions and Consumption, major Chinese producers, distributors, raw material suppliers, equipment providers and their contact information, industry chain relationship analysis.

The research in this report also includes product parameters, production process, cost structure, and data information classified by region, technology and application. Finally, the paper model new project SWOT analysis and investment feasibility study of the case model.

Overall, this is an in-depth research report specifically for the Spatial OMICS industry. The research center uses an objective and fair way to conduct an in-depth analysis of the development trend of the industry, providing support and evidence for customer competition analysis, development planning, and investment decision-making. In the course of operation, the project has received support and assistance from technicians and marketing personnel in various links of the industry chain.

Spatial OMICS market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies’ focus related to Spatial OMICS market.

Prominent players in the market are predicted to face tough competition from the new entrants. However, some of the key players are targeting to acquire the startup companies in order to maintain their dominance in the global market. For a detailed analysis of key companies, their strengths, weaknesses, threats, and opportunities are measured in the report by using industry-standard tools such as the SWOT analysis. Regional coverage of key companies is covered in the report to measure their dominance. Key manufacturers of Spatial OMICS market are focusing on introducing new products to meet the needs of the patrons. The feasibility of new products is also measured by using industry-standard tools.

Key companies are increasing their investments in research and development activities for the discovery of new products. There has also been a rise in the government funding for the introduction of new Spatial OMICS market. These factors have benefited the growth of the global market for Spatial OMICS. Going forward, key companies are predicted to benefit from the new product launches and the adoption of technological advancements. Technical advancements have benefited many industries and the global industry is not an exception.

New product launches and the expansion of already existing business are predicted to benefit the key players in maintaining their dominance in the global market for Spatial OMICS. The global market is segmented on the basis of region, application, en-users and product type. Based on region, the market is divided into North America, Europe, Asia-Pacific, Latin America and Middle East and Africa (MEA).

In this study, the years considered to estimate the market size of Spatial OMICS are as follows:

  • History Year: 2017-2020
  • Base Year: 2021
  • Forecast Year 2021 to 2030

Reasons to Purchase this Report:

- Market segmentation analysis including qualitative and quantitative research incorporating the impact of economic and policy aspects
- Regional and country level analysis integrating the demand and supply forces that are influencing the growth of the market.
- Market value USD Million and volume Units Million data for each segment and sub-segment
- Competitive landscape involving the market share of major players, along with the new projects and strategies adopted by players in the past five years
- Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players

Research Methodology:

In-depth interviews and discussions were conducted with several key market participants and opinion leaders to compile the research report.

This research study involved the extensive usage of both primary and secondary data sources. The research process involved the study of various factors affecting the industry, including the government policy, market environment, competitive landscape, historical data, present trends in the market, technological innovation, upcoming technologies and the technical progress in related industry, and market risks, opportunities, market barriers and challenges. The following illustrative figure shows the market research methodology applied in this report.

Market Size Estimation

Top-down and bottom-up approaches are used to estimate and validate the global market size for company, regional division, product type and application (end users).

The market estimations in this report are based on the selling price (excluding any discounts provided by the manufacturer, distributor, wholesaler or traders). Market share analysis, assigned to each of the segments and regions are achieved through product utilization rate and average selling price.

Major manufacturers & their revenues, percentage splits, market shares, growth rates and breakdowns of the product markets are determined through secondary sources and verified through the primary sources.

All possible factors that influence the markets included in this research study have been accounted for, viewed in extensive detail, verified through primary research, and analyzed to get the final quantitative and qualitative data. The market size for top-level markets and sub-segments is normalized, and the effect of inflation, economic downturns, and regulatory & policy changes or others factors are accounted for in the market forecast. This data is combined and added with detailed inputs and analysis from Vision Research Reports and presented in this report.

Market Breakdown and Data Triangulation

After complete market engineering with calculations for market statistics; market size estimations; market forecasting; market breakdown; and data triangulation. Extensive primary research was conducted to gather information and verify and validate the critical numbers arrived at. In the complete market engineering process, both top-down and bottom-up approaches were extensively used, along with several data triangulation methods, to perform market estimation and market forecasting for the overall market segments and sub-segments listed in this report.

Secondary Sources

Secondary Sources occupies approximately 25% of data sources, such as press releases, annual reports, Non-Profit organizations, industry associations, governmental agencies and customs data, and so on. This research study includes secondary sources; directories; databases such as Bloomberg Business, Wind Info, Hoovers, Factiva (Dow Jones & Company), TRADING ECONOMICS, and avention; Investing News Network; statista; Federal Reserve Economic Data; annual reports; investor presentations; and SEC filings of companies.

Primary Sources

In the primary research process, various sources from both the supply and demand sides were interviewed to obtain qualitative and quantitative information for this report. The primary sources from the supply side include product manufacturers (and their competitors), opinion leaders, industry experts, research institutions, distributors, dealer and traders, as well as the raw materials suppliers and producers, etc.

The primary sources from the demand side include industry experts such as business leaders, marketing and sales directors, technology and innovation directors, supply chain executive, end users (product buyers), and related key executives from various key companies and organizations operating in the global market.

The study objectives of this report are:

  • To analyze and study the global market capacity, production, value, consumption, status (2017-2020) and forecast (2021-2030);
  • Focuses on the key manufacturers, to study the capacity, production, value, market share and development plans in future.
  • Comprehensive company profiles covering the product offerings, key financial information, recent developments, SWOT analysis, and strategies employed by the major market players
  • To define, describe and forecast the market by type, application and region.
  • To analyze the global and key regions market potential and advantage, opportunity and challenge, restraints and risks.
  • To identify significant trends and factors driving or inhibiting the market growth.
  • To analyze the opportunities in the market for stakeholders by identifying the high growth segments.
  • To strategically analyze each submarket with respect to individual growth trend and their contribution to the market
  • To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market
  • To strategically profile the key players and comprehensively analyze their growth strategies.

Featured Research Reports

  • Featured Research Reports

    Trauma Care Centers Market (By Facility Type: In-house, Standalone; By Trauma Type: Falls, Traffic-related Injuries; By Service Type) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022-2030

  • Featured Research Reports

    Monkeypox Vaccine And Treatment Market (By Product: Vaccine, Drugs) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022-2030

  • Featured Research Reports

    Hyaluronic Acid Market (By Application: Dermal Fillers, Osteoarthritis, Ophthalmic, Vesicoureteral Reflux) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022-2030

  • Featured Research Reports

    AI in Oncology Market (By Treatment: Chemotherapy, Radiotherapy, Immunotherapy, Targeted Therapy, Gene Therapy; By Cancer Type; By Application) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022-2030

  • Featured Research Reports

    Paracetamol IV Market (By Application: Surgical, Non-surgical; By Indication: Pyrexia, Pain; By End-use: Hospitals, Clinics) - Global Industry Analysis, Size, Share, Growth, Trends, Revenue, Regional Outlook and Forecast 2022-2030